Skip to contents

Returns the mean or sum of vertex-wise surface data for each ROI of a selected atlas

Usage

surf_to_atlas(surf_data, atlas, mode = "mean")

Arguments

surf_data

A N x V matrix object containing the surface data (N row for each subject, V for each vertex), in fsaverage5 (20484 vertices), fsaverage6 (81924 vertices), fslr32k (64984 vertices) or hippocampal (14524 vertices) space. See also Hipvextract(), SURFvextract() or FSLRvextract output formats.

atlas

A numeric integer object corresponding to the atlas of interest. 1=Desikan, 2=Destrieux-148, 3=Glasser-360, 4=Schaefer-100, 5=Schaefer-200, 6=Schaefer-400. Set to 1 by default. This argument is ignored for hippocampal surfaces.

mode

A string indicating whether to extract the sum ('sum') or the average ('mean') of the ROI vertices values. Default is 'mean'.

Value

A matrix object with ROI as column and corresponding average vertex-wise values as row

Details

The function currently works with the aparc/Desikan-Killiany-70, Destrieux-148, Glasser-360, Schaefer-100, Schaefer-200, Schaefer-400 atlases. ROI to vertex mapping data were obtained from the 'ENIGMA toolbox' ; data for Destrieux came from 'Nilearn' 's nilearn.datasets.fetch_atlas_surf_destrieux

For hippocampal data, the function currently works with the "bigbrain" 10-parcels atlas integrated in 'HippUnfold.' See also doi:10.1016/j.neuroimage.2019.116328 .

See also

Examples

CTv = runif(20484,min=0, max=100)
parcel_data = surf_to_atlas(CTv, 1)